

Natural Product Research

Formerly Natural Product Letters

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/gnpl20

Cytotoxic and anti-migratory effects of polyphenolic compounds on breast cancer cells by altering *Jam-A*, *LFA-1*, and *VLA-4* gene expression

Gulcin Ozkara, Ayse Begum Ceviz, Allison Pinar Eronat, Funda Pehlevan Karabiyik, Gonca Candan, Oguz Ozturk & Hulya Yilmaz-Aydogan

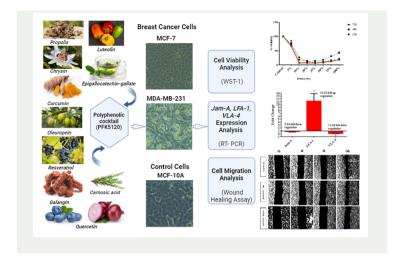
To cite this article: Gulcin Ozkara, Ayse Begum Ceviz, Allison Pinar Eronat, Funda Pehlevan Karabiyik, Gonca Candan, Oguz Ozturk & Hulya Yilmaz-Aydogan (28 Apr 2025): Cytotoxic and anti-migratory effects of polyphenolic compounds on breast cancer cells by altering *Jam-A, LFA-1,* and *VLA-4* gene expression, Natural Product Research, DOI: 10.1080/14786419.2025.2494629

To link to this article: https://doi.org/10.1080/14786419.2025.2494629

+	View supplementary material 🗹
	Published online: 28 Apr 2025.
Ø.	Submit your article to this journal 🗹
hil	Article views: 27
a`	View related articles 🗹
CrossMark	View Crossmark data 🗗

Cytotoxic and anti-migratory effects of polyphenolic compounds on breast cancer cells by altering *Jam-A*, *LFA-1*, and *VLA-4* gene expression

Gulcin Ozkara^{a,b}, Ayse Begum Ceviz^{a,c}, Allison Pinar Eronat^{a,d}, Funda Pehlevan Karabiyik^{a,e}, Gonca Candan^a, Oguz Ozturk^a and Hulya Yilmaz-Aydogan^a


^aAziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey; ^bFaculty of Medicine, Department of Medical Biology, Bezmialem Vakif University, Istanbul, Turkey; ^cFaculty of Medicine, Department of Medical Genetics, Istanbul Health & Technology University, Istanbul, Turkey; ^dDepartment of Molecular Biology and Genetics, Halic University, Istanbul, Turkey; ^eDepartments of Medical Laboratory Techniques, Vocational School of Health Services, Istanbul Gelisim University, Istanbul, Turkey

ABSTRACT

This study represents the initial research of the effects of a combination of the largest number (13) of different polyphenic substances (PFK⁵¹²⁰), formulated based on the propolis content on viability, migration and expression of lymphocyte cell function-associated antigen-1 (LFA-1), very late antigen-4 (VLA-4) and junction adhesion molecule A (Jam-A) in breast cancer (BC) cells. PFK⁵¹²⁰ negatively affected cell viability at a 5% concentration as compared with unexposed ones (p < 0.001). Treatment with 20% PFK5120 for 48h down-regulated Jam-A in MCF-7 and MCF-10A, up-regulated LFA-1 in MCF-10A and MDA-MB-231, and down-regulated VLA-4 in MCF-10A and MDA-MB-231 (p < 0.001). Furthermore, migration was found to be inhibited by PFK⁵¹²⁰ at varying doses and times. Migration was completely inhibited by 35% PFK⁵¹²⁰ treatment in MDA-MB-231, while even lower concentrations (10%) were effective in MCF-7. Current findings indicate that PFK5120 represents a valuable natural component of BC therapy through its cytotoxic and anti-migratory effects.

ARTICLE HISTORY
Received 26 August 2024
Accepted 12 April 2025

KEYWORDSPolyphenols; breast cancer; cell migration; *Jam-A*; *LFA-1*; *VLA-4*

Impact statement

This study is the first to demonstrate that PFK⁵¹²⁰, a novel polyphenol-rich formulation comprising 13 bioactive compounds, exhibits cytotoxic and anti-migratory effects in breast cancer cells. By modulating key adhesion molecules (Jam-A, LFA-1, VLA-4), PFK⁵¹²⁰ shows potential not only as a preventive agent but also as a promising adjuvant in breast cancer therapy.

1. Introduction

Cell adhesion molecules, involving integrins and some junctional proteins are pivotal regulators during the formation and subsequent course of breast cancer (BC) (McSherry et al. 2011). Jam (junctional adhesion molecule) proteins, one of the tight junctions function in diverse immune and adhesion events, including cell polarity, permeability, and migration (McSherry et al. 2011; Zhao et al. 2014). Although previous reports have linked Jam-A expression with many cancer types (Naik et al. 2008; McSherry et al. 2009, 2011; Brennan et al. 2013; Cao et al. 2014; Czubak-Prowizor et al. 2022), its association with BC remains controversial. Some studies demonstrated an inverse relationship between Jam-A expression and BC cell migration (Naik et al. 2008; Wang and Lui 2012; Cao et al. 2014). Conversely, others reported a positive correlation between Jam-A expression and BC migration (McSherry et al. 2009, 2011; Brennan et al. 2013). Lymphocyte function-associated antigen-1 (LFA-1), a β2 integrin predominantly expressed on leukocytes (Hyun et al. 2019), regulates leukocyte adhesion and migration at the site of inflammation by acting as a receptor for intercellular adhesion molecule-1 (ICAM-1) and interacting with Jam-A (Filippi 2016; Vazquez Rodriguez et al. 2017). A close relation between LFA-1 expression and BC survival has been reported (Byrne et al. 2021; Wu et al. 2023). Very late antigen-4 (VLA-4), a member of the β1-integrin family, has been shown to act on endothelial cells to interact with Jam-B, fibronectin, and vascular cell adhesion molecule-1 (VCAM-1) (Strell and Entschladen 2008; Filippi 2016) and moves with LFA-1 during leukocyte migration (Wang et al. 2005). Previous studies in lung, bone, and brain metastasis of BC have up-regulation of VLA-4 (Schlesinger and Bendas 2015; Sharma et al. 2017) in tumor tissues.

Dietary polyphenols have been identified as potential fighters against BC due to their pleiotropic and epigenetic effects (Selvakumar et al. 2020; Nguyen and Osipo 2022). Polyphenols exhibit beneficial biological features against inflammation, cancer, allergies and atherosclerosis by scavenging oxygen radicals, inhibiting various oxidases, and stimulating antioxidant enzymes (Nijveldt et al. 2001). There is also evidence from previous studies that different polyphenols exert anti-migratory and anti-metastatic effects by altering different molecular pathways (Borawska et al. 2016; Masadah et al. 2021; Sari et al. 2022; Yu et al. 2023). In our previous study, propolis with high polyphenol content was also shown to have significant apoptotic-inducing cytotoxic activities on BC cells (Seyhan et al. 2017, 2019). The scope of this study was to further explore the cytotoxic and anti-migration properties of a polyphenolic cocktail (PFK⁵¹²⁰) formulated on the basis of the most effective propolis content identified in our previous studies on BC cells. Therefore, the current study aimed to evaluate the effects of the PFK⁵¹²⁰ polyphenolic cocktail on both LFA-1, VLA-4, and Jam-A gene expression and anti-migration effects in BC cell lines and also to investigate its potential role in BC metastasis for the first time.

2. Results and discussion

2.1. Cell viability

The cell viability results are given in Table S1 and Figures S1A-C. Accordingly, cytotoxic effects of the PFK⁵¹²⁰ were observed in all cell lines, depending on concentration and time. The viability was affected negatively with the treatment of PFK⁵¹²⁰ beginning from 5% concentration compared to controls at 24h, 48h, and 72h (p<0.001). The cell viability was decreased dramatically following treatment with 20% PFK⁵¹²⁰ in MCF-7 (Figure S1A) and MCF-10A (Figure S1C). The cytotoxic effect of PFK⁵¹²⁰ was started at 24h in MDA-MB 231, and the IC50 concentration was determined as 20-35% at 48h (Figure S1B). The cell viability assay demonstrated that 13.2% of MCF-7, 57.5% of MDA-MB-231, and 12.4% of MCF-10A remained viable following 20% PFK⁵¹²⁰ treatment for 48h (Table S1). When the treatment (20% PFK⁵¹²⁰) was applied for 72h, the cell viability was 7.49% for MCF-7, 36.68% for MDA-MB-231 and 8.15% for MCF-10A. These outcomes indicate a slight tendency for cell selectivity against MCF-7 than for MCF-10A. The effects of PFK⁵¹²⁰ on MCF-10A mammary epithelial cells modelling fibrocystic breast disease are consistent with the findings of our previous research, which demonstrated the antiproliferative activities of propolis samples and the polyphenolic compounds ferulic acid, pinostrobin, and galangin on these cells (Çelik et al., 2024).

2.2. Cell migration

PFK⁵¹²⁰ had an anti-migratory effect on the MCF-7 and MDA-MB-231 at varying doses and times. In MCF-7, a significant decrease in migration was observed at 4h, 8h, and 24h with 5% PFK⁵¹²⁰ and at all hours with 10% PFK⁵¹²⁰ (Table S2, Figures S2A and S5A). In MDA-MB-231, 5% PFK⁵¹²⁰ resulted in a notable decrease in migration at 24h (p<0.05), whereas 10% PFK⁵¹²⁰ affected cell migration at 4h (p<0.05), 24h (p<0.0001), and 48h (p<0.05) (Table S2, Figures S2B and S5B). Similarly, 35% of PFK⁵¹²⁰ caused migration arrest in MDA-MB-231 at 48h. In MCF-10A, migration was inhibited by all concentrations of PFK⁵¹²⁰ for up to 24h. However, cells migrated again after 24h and the scratch was almost closed within 48h as in untreated MCF-10A (Table S2, Figures S2C and S5C).

Our results are consistent with the previous reports of cytotoxic, antiproliferative, and anti-migratory properties of phenolic substances which are the components of PFK⁵¹²⁰ including luteolin (Wu et al. 2021), epigallocatechin (Marín et al. 2023), apigenin (Sudhakaran et al. 2023), caffeic acid (Rezaei-Seresht et al. 2019), CAPE (caffeic acid phenethyl ester) (Fang et al. 2023), chrysin (Yang et al. 2014), quercetin (Wu et al. 2018), oleuropein (Messeha et al. 2020), and resveratrol (Kowsari et al. 2023) and our previous research in which the antiapoptotic and cytotoxic effects of Anatolian honey (Seyhan et al. 2017) and propolis samples rich in polyphenolic compounds on BC cells, both hormone-positive (+) and hormone-negative (–) were demonstrated (Seyhan et al. 2019).

2.3. Influence of PFK⁵¹²⁰ treatment on cell morphology

After 48h of treatment with 20% PFK⁵¹²⁰, apoptotic morphological changes previously reported (Willingham 1999), were detected in the cells, such as a decrease in cell number and the amount of cytoplasm, blebbing, and impaired membrane integrity. PFK⁵¹²⁰ led to the disruption of cell attachment and the floating of cells on the surface of the culture medium (Figure S3). These morphological changes related to apoptosis were also observed in our previous study with Anatolian propolis in BC cells (Seyhan et al. 2017).

2.4. Gene expression

2.4.1. Comparison of expression levels between non-invasive and invasive cells without PFK^{5120} treatment

Jam-A was reported to modulate cell migration as well as apoptosis and cell proliferation in BC (Murakami et al. 2011; Wang and Lui 2012; Brennan et al. 2013; Goetsch et al. 2013). The association of *Jam-A* expression with BC is controversial. While an inverse correlation was reported between *Jam-A* and BC cell migration by some researchers (Naik et al. 2008; Wang and Lui 2012; Cao et al. 2014), others reported that higher levels of *Jam-A* are favourably associated with tumor aggressiveness and poor prognosis (McSherry et al. 2009, 2011; Brennan et al. 2013). It was suggested that a down-regulated *Jam-A* reduced tumor progression through induction of apoptosis, suggesting that it may be a survival factor in BC (Murakami et al. 2011). *In vivo* studies in xenografts of various cancers (breast, lung, kidney, prostate) showed that Jam-A antibody treatment significantly reduces tumor progression (Goetsch et al. 2013; Walker et al. 2021). Recent research suggests that Jam-A has a potential molecule for cancer therapy as it participates in multiple signalling pathways that drive tumor progression, cell proliferation, migration, angiogenesis, apoptosis, etc. (Smith

et al. 2022; Bednarek et al. 2023). In the current research, the highest Jam-A expression (lowest ΔCt value) was found in MCF-10A, followed by MCF-7 and MDA-MB-231 cells (Figure S4). Significant differences in Jam-A expression (ΔCt) were observed between MCF-7 cells and MDA-MB-231, and MCF-10A (p = 0.013 and p = 0.003, respectively) (Figure S4A). Accordingly, Jam-A expression was 5.77-fold and 12.46-fold lower in MCF-7 and MDA-MB-231, respectively, than in MCF-10A. The present findings are in agreement with the findings of previous research, which expressed an inverse correlation between Jam-A and cell aggressiveness in BC (Naik et al. 2008; Wang and Lui 2012; Cao et al. 2014; Bednarek et al. 2020).

Metastasis and poor prognosis-related alterations in integrin gene expression have previously been reported (Seguin et al. 2015; Sökeland and Schumacher 2019). However, studies investigating VLA-4 and LFA-1 expression in BC are limited. In this study, the highest LFA-1 expression was detected in untreated MCF-7, followed by MCF-10A and MDA-MB-231. LFA-1 expression was 2.26-fold higher in untreated MCF-7, and 6.32-fold lower in MDA-MB-231 than MCF-10A. However, when ΔCt values were compared, no significant difference in LFA-1 expression was observed between untreated MCF-7 and MDA-MB-231 versus MCF-10A (p>0.05) (Figure S4B). Budinsky et al. previously reported very low LFA-1 alpha and LFA-1 beta expression in MCF-7 (Budinsky et al. 1997). Wang et al. suggested that increased CD44 expression which leads to the up-regulated LFA-1 and VLA-4 via crosslinking and increased integrin-mediated cell migration contributes to tumor metastasis in MDA-MB-435S BC cells. (Wang et al. 2005). Vasse et al. demonstrated higher LFA-1 expression in MDA-MB-231 than in MCF-7 (Vasse et al. 2001). Unlike the previous findings (Vasse et al. 2001), LFA-1 expression in PFK⁵¹²⁰ untreated MCF-7 and MDA-MB-231 was not significantly different from that in MCF-10A and among untreated cells, the highest LFA-1 expression was observed in MCF-7, followed by MCF-10A and MDA-MB-231 in the current research (Figure S4B).

VLA-4 was found lower in MCF-7, ZR-75-1, and SK-BR-3 cells than in normal epithelial cells previously (Budinsky et al. 1997). Up-regulation of VLA-4 has been shown in metastasis of BC (Schlesinger and Bendas 2015; Sharma et al. 2017). In basal-like and HER2 (+) BC, VLA-4 expression was related to good prognosis (Rojas et al. 2021). In recent research, up-regulated VLA-4 in MDA-MB-231 showed an association with brain metastasis in vitro (Zhang et al. 2023). Compatible with earlier studies (Budinsky et al. 1997), the current study presented that VLA-4 expression was 125.36-fold lower in MDA-MB-231 compared to MCF-10A (p = 0.007) (Figure S4C). Conversely, no VLA-4 expression was detected in MCF-7 in our study.

2.4.2. The influence of 20% PFK⁵¹²⁰ treatment (48h) on Jam-A, LFA-1, and **VLA-4** expressions

20% PFK⁵¹²⁰ led to down-regulation of the *Jam-A* after 48h, which was ~7644-fold in MCF-7 (p = 0.0001) and 49.45-fold in MCF-10A (p < 0.0001). However, the down-regulation of Jam-A in MDA-MB-231 did not reach statistical significance (1.34-fold) (Figure S5A). As no Jam-A expression was observed in MCF-7 after 48h 20% PFK⁵¹²⁰ treatment, the fold-change was calculated using the accepted value of 45 Ct (Yamashita et al. 2023). In this study, no Jam-A expression was detected in MCF-7 after 20% PFK⁵¹²⁰ treatment for 48h, whereas it was observed in control cells (7644-fold down-regulation (p < 0.0001)). There was also a 49.24-fold down-regulation of the Jam-A in MCF-10A at 48h for control cells (without treatment) (p < 0.001). In MDA-MB-231, a slight down-regulation of Jam-A (1.34-fold) was observed (p > 0.05). Current findings reveal that PFK⁵¹²⁰ caused a notable down-regulation of Jam-A in both MCF-7 and MCF-10A, and this effect of PFK⁵¹²⁰ was stronger in MCF-7 cells (~7644 vs 49.45-fold down-regulation, respectively). Although the mechanism underlying the observed effects in this study is not fully understood, the fact that PFK⁵¹²⁰ decreased both cell viability and migration and downregulated Jam-A in MCF-7 and MCF-10A may be attributable to rendering the cells sensitive to apoptosis as suggested in previous studies (Murakami et al. 2011). The fact that 20% concentrations of PFK⁵¹²⁰ did not significantly affect the down-regulation of Jam-A in MDA-MB-231 but the viability and migration, suggests that higher than 20% concentrations of PFK⁵¹²⁰ may be required to reduce Jam-A levels as the viability assay shows IC50 of PFK⁵¹²⁰ treatment for MDA-MB-231 is higher than MCF-7 (IC50 for 48h: 20-35% vs 7-10%, respectively) or the cell migration in these highly invasive cells may be driven by factors other than Jam-A. The present findings show consistency with the results of Bednarek et al. which showed that peptide 4D, an antagonist of Jam-A, exhibited a more pronounced inhibiting effect on the transendothelial migration of high Jam-A expressing MCF-7 compared with MDA-MB-231, suggesting that the migration of MDA-MB-231 may be enhanced compared to MCF-7 since MDA-MB-231 had decreased Jam-A than MCF-7 (Bednarek et al. 2020). Conversely, the recent study of Bednarek et al. showed that peptide 4D did not affect MDA-MB-231 migration, but effectively inhibited metastasis in the triple-negative BC (TNBC) 4T1 mouse model suggesting that Jam-A antagonist may inhibit new tight junction formation, but not destroy the existing ones (Bednarek et al. 2023). In the present study, while Jam-A is down-regulated in both MCF-7 and MCF-10A cells by the 20% PFK⁵¹²⁰ treatment, inhibition of the cell migration was only observed in MCF-7. In MCF-10A, migration was inhibited by PFK5120 treatment until 24h, however, cells initiated to migrate again after 24h. These findings support the results of Bednarek et al. which show an increased cell migration in MCF-10A cells after Jam-A antagonist application suggesting the previously supported idea that MCF-10A could not be a good model to represent the non-tumorigenic mammary epithelium (Qu et al. 2015; Bednarek et al. 2023). Moreover, in the mice study of Murakami et al. transgenic mice without Jam-A expression showed less tumour growth and increased susceptibility to apoptosis in the TNBC 4T1 model (Murakami et al. 2011). As with another antagonist of Jam-A, it has been demonstrated that Tetrocarcin-A and tetraspanin inhibit the proliferation and invasion of TNBC cells, concomitantly reducing Jam-A levels (Vellanki, Cruz, Jahns, et al. 2019; Vellanki, Cruz, Richards, et al. 2019; Vences-Catalán et al. 2021). Our study provides further evidence for the hypothesis that Jam-A plays a significant role in BC metastasis, and secondly, similar to the effects of Jam-A antagonists, it can be predicted that PFK⁵¹²⁰ may prevent the early stages of metastasis or induce apoptosis by modulating Jam-A expression. Considering that PFK⁵¹²⁰ may be a natural alternative as a Jam-A antagonist without toxic side effects, it is obviously worth further investigation.

Recent studies have suggested LFA-1 (ITGB2) as a target for immunotherapy (Wei et al. 2021). There is evidence that the overexpression of ITGB4 is associated

with hematological malignancies (Wei et al. 2021), oral squamous-cell cancer (Zhang et al. 2020), and TNBC (Puerkaiti et al. 2020). Liu et al. showed that ITGB2-AS1, a long non-coding RNA, could promote migration and invasion by increasing the levels of ITGB2 (LFA-1) in MCF-7 cells. (Liu et al. 2018). In the current research, 20% PFK 5120 caused an 11.22-fold (p < 0.0001) up-regulated LFA-1 in MDA-MB-231 and an 8.33-fold (p < 0.001) up-regulation in MCF-10A. On the contrary, it caused a slight down-regulation of LFA-1 (1.37-fold (p > 0.05)) in MCF-7 (Figure S5B). Contrary to our findings, Soto et al. reported the prevention of brain metastasis via the knockdown of LFA-1 expression of TNBC MDA-MB-231 in mice (Soto et al. 2016). Furthermore, Niu et al. demonstrated that LFA-1 knockdown showed a decreased number of Treg cells (regulatory T cells) and inhibited intestinal tumor growth in mice (Niu et al. 2023). Conversely, Vasse et al. showed that NaPa (sodium phenylacetate) led to up-regulation of LFA-1 and reduced the invasiveness of both MCF-7 and MDA-MB-231 (Vasse et al. 2001). Overall, our results imply that the anti-migratory effects of PFK5120 in MCF-7 may not be directly mediated by LFA-1, whereas it may inhibit cell invasion by up-regulating LFA-1 in MDA-MB-231 similarly to the study of Vasse et al. (2001). The findings of the current study do not demonstrate inconsistency with the majority of previous studies with respect to the LFA-1 gene expression and invasiveness of the BC cells, which may be because LFA-1 is predominantly expressed in leucocytes and the integrin family exerts a direct effect on cell migration through interaction with the extracellular matrix (ECM). Therefore, the exact effect of PFK⁵¹²⁰ needs to be studied in more detail including the ECM effect on cell migration.

ITGB1 (VLA-4) is another potential target for metastasis (Liu et al. 2024). Liu et al. demonstrated that USP22, a deubiquitinase, promoted ITGB1 (VLA-4) transcription and USP22 inhibition prevented BC lung metastasis in mice (Liu et al. 2024). Avtanski et al. detected that VLA-4 is up-regulated in MCF-7 after resistin treatment which induces cell migration and indicated that VLA-4 is associated with cell migration in MCF-7 cells (Avtanski et al. 2019). Vahdanikia et al. demonstrated that the VLA-4 expression and cell migration in MDA-MB-231 were inhibited by Wharton's Jelly Stem Cells (Vahdanikia et al. 2022). Supporting this, in the present study, the administration of 20% PFK⁵¹²⁰ resulted in the down-regulation of VLA-4 in MDA-MB-231 and MCF-10A, with $a \sim 14.06$ -fold (p < 0.0001, Figure S5B) and ~ 500 -fold (p < 0.0001, Figure S5B), respectively. However, in contrast to the findings of Avtanski et al. VLA-4 expression was not detected in MCF-7 (both PFK5120 treated and control) in our study (Avtanski et al. 2019). These results indicate that PFK⁵¹²⁰ may impede cell migration by down-regulating the VLA-4 exclusively in MDA-MB-231 with invasive characteristics, not MCF-7. This observation suggests that PFK⁵¹²⁰ could serve as a promising inhibitor of VLA-4 as a component of a therapeutic approach for TNBC.

3. Experimental

The online supplementary data provides comprehensive methods for cell culture conditions, PFK5120 preparation, cell viability assay, gene expression, cell migration and statistical analysis, along with the relevant tables, graphs and figures.

4. Conclusions

Current results indicate that PFK⁵¹²⁰, a unique polyphenol-rich cocktail with 13 different compounds (apigenin, galangin, caffeic acid phenethyl ester (CAPE), chrysin, curcumin, luteolin, epigallocatechin-gallate (EGCG), oleuropein, quercetin, resveratrol, pinocembrin, carnosic acid), cytotoxic and anti-migratory effects through modulation of *Jam-A, LFA-1* and *VLA-4* expressions in both hormone (+) and (-) BC cells. These results suggest that PFK⁵¹²⁰ may be not only preventive against BC but also a powerful adjuvant in its treatment, which remains to be examined in future *in vivo* studies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The study was supported by the Istanbul University Research Fund (project number 27649).

References

- Avtanski D, Garcia A, Caraballo B, Thangeswaran P, Marin S, Bianco J, Lavi A, Poretsky L. 2019. Resistin induces breast cancer cells epithelial to mesenchymal transition (EMT) and stemness through both adenylyl cyclase-associated protein 1 (CAP1)-dependent and CAP1-independent mechanisms. Cytokine. 120:155–164. doi:10.1016/j.cyto.2019.04.016.
- Bednarek R, Selmi A, Wojkowska D, Karolczak K, Popielarski M, Stasiak M, Salifu MO, Babinska A, Swiatkowska M. 2020. Functional inhibition of F11 receptor (F11R/junctional adhesion molecule-A/JAM-A) activity by a F11R-derived peptide in breast cancer and its microenvironment. Breast Cancer Res Treat. 179(2):325–335. doi:10.1007/s10549-019-05471-x.
- Bednarek R, Wojkowska DW, Braun M, Watala C, Salifu MO, Swiatkowska M, Babinska A. 2023. Triple negative breast cancer metastasis is hindered by a peptide antagonist of F11R/JAM-A protein. Cancer Cell Int. 23(1):160. doi:10.1186/s12935-023-03023-4.
- Borawska MH, Naliwajko SK, Moskwa J, Markiewicz-Żukowska R, Puścion-Jakubik A, Soroczyńska J. 2016. Anti-proliferative and anti-migration effects of polish propolis combined with *Hypericum perforatum* L. on glioblastoma multiforme cell line U87MG. BMC Complement Altern Med. 16(1):367. doi:10.1186/s12906-016-1351-2.
- Brennan K, McSherry EA, Hudson L, Kay EW, Hill AD, Young LS, Hopkins AM. 2013. Junctional adhesion molecule-A is co-expressed with HER2 in breast tumors and acts as a novel regulator of HER2 protein degradation and signaling. Oncogene. 32(22):2799–2804. doi:10.1038/onc.2012.276.
- Budinsky AC, Brodowicz T, Wiltschke C, Czerwenka K, Michl I, Krainer M, Zielinski CC. 1997. Decreased expression of ICAM-1 and its induction by tumor necrosis factor on breast-cancer cells in vitro. Int J Cancer. 71(6):1086–1090. doi:10.1002/(sici)1097-0215(19970611)71:6<1086 ::aid-ijc27>3.0.co;2-a.
- Byrne CE, Decombe JB, Bingham GC, Remont J, Miller LG, Khalif L, King CT, Hamel K, Bunnell BA, Burow ME, et al. 2021. Evaluation of extracellular matrix composition to improve breast cancer modeling. Tissue Eng Part A. 27(7–8):500–511. doi:10.1089/ten.TEA.2020.0364.
- Cao M, Nie W, Li J, Zhang Y, Yan X, Guan X, Chen X, Zen K, Zhang CY, Jiang X, et al. 2014. MicroRNA-495 induces breast cancer cell migration by targeting JAM-A. Protein Cell. 5(11):862–872. doi:10.1007/s13238-014-0088-2.
- Czubak-Prowizor K, Babinska A, Swiatkowska M. 2022. The F11 Receptor (F11R)/Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A) in cancer progression. Mol Cell Biochem. 477(1):79–98. doi:10.1007/s11010-021-04259-2.

- Çelik İ, Seyhan M, Ceviz A, Aydoğan Ç, Yılmaz Aydoğan H, Öztürk O. 2024. The therapeutic approach to fibrocystic breast disease in the MCF-10A cell culture model: Striking efficacy of polyphenols. ijp. 54(1):40-48. doi:10.26650/lstanbulJPharm.2024.1299245.
- Fang Q, Xin W, Chen L, Fu Y, Qi Y, Ding H, Fang L. 2023. Caffeic acid phenethyl ester suppresses metastasis of breast cancer cells by inactivating FGFR1 via MD2. PLOS One. 18(7):e0289031. doi:10.1371/journal.pone.0289031.
- Filippi MD. 2016. Mechanism of diapedesis: importance of the transcellular route. Adv Immunol. 129:25-53. doi:10.1016/bs.ai.2015.09.001.
- Goetsch L, Haeuw JF, Beau-Larvor C, Gonzalez A, Zanna L, Malissard M, Lepecquet AM, Robert A, Bailly C, Broussas M, et al. 2013. A novel role for junctional adhesion molecule-A in tumor proliferation: modulation by an anti-JAM-A monoclonal antibody. Int J Cancer. 132(6):1463-1474. doi:10.1002/ijc.27772.
- Hyun Y-M, Choe YH, Park SA, Kim M. 2019. LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) distinctly regulate neutrophil extravasation through hotspots I and II. Exp Mol Med. 51(4):1– 13. doi:10.1038/s12276-019-0227-1.
- Kowsari H, Davoodvandi A, Dashti F, Mirazimi SMA, Bahabadi ZR, Aschner M, Sahebkar A, Gilasi HR, Hamblin MR, Mirzaei H. 2023. Resveratrol in cancer treatment with a focus on breast cancer. Curr Mol Pharmacol. 16(3):346-361. doi:10.2174/1874467215666220616145216.
- Liu K, Gao Q, Jia Y, Wei J, Chaudhuri SM, Wang S, Tang A, Mani NL, Iyer R, Cheng Y, et al. 2024. Ubiquitin-specific peptidase 22 controls integrin-dependent cancer cell stemness and metastasis. iScience. 27(9):110592. doi:10.1016/j.isci.2024.110592.
- Liu M, Gou L, Xia J, Wan Q, Jiang Y, Sun S, Tang M, He T, Zhang Y. 2018. LncRNA ITGB2-AS1 could promote the migration and invasion of breast cancer cells through up-regulating ITGB2. Int J Mol Sci. 19(7):1866–1879. doi:10.3390/ijms19071866.
- Marín V, Burgos V, Pérez R, Maria DA, Pardi P, Paz C. 2023. The potential role of Epigallocatechin-3-Gallate (EGCG) in breast cancer treatment. Int J Mol Sci. 24(13):10737. doi:10.3390/ ijms241310737.
- Masadah R, Ikram D, Rauf S. 2021. Effects of propolis and its bioactive components on breast cancer cell pathways and the molecular mechanisms involved. Breast Dis. 40(S1):S15-s25. doi:10.3233/bd-219003.
- McSherry EA, Brennan K, Hudson L, Hill AD, Hopkins AM. 2011. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase. Breast Cancer Res. 13(2):R31. doi:10.1186/bcr2853.
- McSherry EA, McGee SF, Jirstrom K, Doyle EM, Brennan DJ, Landberg G, Dervan PA, Hopkins AM, Gallagher WM. 2009. JAM-A expression positively correlates with poor prognosis in breast cancer patients. Int J Cancer. 125(6):1343-1351. doi:10.1002/ijc.24498.
- Messeha SS, Zarmouh NO, Asiri A, Soliman KFA. 2020. Gene expression alterations associated with oleuropein-induced antiproliferative effects and S-phase cell cycle arrest in triple-negative breast cancer cells. Nutrients,. 12(12):3755. doi:10.3390/nu12123755.
- Murakami M, Giampietro C, Giannotta M, Corada M, Torselli I, Orsenigo F, Cocito A, d'Ario G, Mazzarol G, Confalonieri S, et al. 2011. Abrogation of junctional adhesion molecule-A expression induces cell apoptosis and reduces breast cancer progression. PLOS One,. 6(6):e21242. doi:10.1371/journal.pone.0021242.
- Naik MU, Naik TU, Suckow AT, Duncan MK, Naik UP. 2008. Attenuation of junctional adhesion molecule-A is a contributing factor for breast cancer cell invasion. Cancer Res. 68(7):2194-2203. doi:10.1158/0008-5472.Can-07-3057.
- Nguyen M, Osipo C. 2022. Targeting breast cancer stem cells using naturally occurring phytoestrogens. Int J Mol Sci. 23(12):6813. doi:10.3390/ijms23126813.
- Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. 2001. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 74(4):418-425. doi:10.1093/ajcn/74.4.418.
- Niu T, Li Z, Huang Y, Ye Y, Liu Y, Ye Z, Jiang L, He X, Wang L, Li J. 2023. LFA-1 knockout inhibited the tumor growth and is correlated with Treg cells. Cell Commun Signal. 21(1):233. doi:10.1186/s12964-023-01238-6.

- Puerkaiti P, Fan JJ, Ma BL. 2020. [Effect of overexpression of integrin \(\beta \) on clinical prognosis in triple negative breast cancer]. Zhonghua Yi Xue Za Zhi. 100(30):2358-2362. doi:10.3760/ cma.j.cn112137-20200328-00983.
- Qu Y, Han B, Yu Y, Yao W, Bose S, Karlan BY, Giuliano AE, Cui X. 2015. Evaluation of MCF10A as a reliable model for normal human mammary epithelial cells. PLOS One. 10(7):e0131285. doi:10.1371/journal.pone.0131285.
- Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E. 2019. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: an in silico and in vitro study. Avicenna J Phytomed. 9(6):574-586. doi:10.22038/ ajp.2019.13475.
- Rojas K, Baliu-Pigué M, Manzano A, Saiz-Ladera C, García-Barberán V, Cimas FJ, Pérez-Segura P, Pandiella A, Győrffy B, Ocana A. 2021. In silico transcriptomic mapping of integrins and immune activation in Basal-like and HER2+breast cancer. Cell Oncol. 44(3):569-580. doi:10.1007/s13402-020-00583-9.
- Sari AN, Dhanjal JK, Elwakeel A, Kumar V, Meidinna HN, Zhang H, Ishida Y, Terao K, Sundar D, Kaul SC, et al. 2022. A low dose combination of withaferin a and caffeic acid phenethyl ester possesses anti-metastatic potential in vitro: molecular targets and mechanisms. Cancers. 14(3):787. doi:10.3390/cancers14030787.
- Schlesinger M, Bendas G. 2015. Contribution of very late antigen-4 (VLA-4) integrin to cancer progression and metastasis. Cancer Metastasis Rev. 34(4):575-591. doi:10.1007/ s10555-014-9545-x.
- Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. 2015. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 25(4):234-240. doi:10.1016/j. tcb.2014.12.006.
- Selvakumar P, Badgeley A, Murphy P, Anwar H, Sharma U, Lawrence K, Lakshmikuttyamma A. 2020. Flavonoids and other polyphenols act as epigenetic modifiers in breast cancer. Nutrients. 12(3):761. doi:10.3390/nu12030761.
- Seyhan MF, Yılmaz E, Timirci-Kahraman Ö, Saygılı N, Kısakesen H, Eronat AP, Ceviz AB, Bilgic Gazioğlu S, Yılmaz-Aydoğan H, Öztürk O. 2017. Anatolian honey is not only sweet but can also protect from breast cancer: elixir for women from artemis to present. IUBMB Life. 69(9):677-688. doi:10.1002/iub.1652.
- Seyhan MF, Yılmaz E, Timirci-Kahraman Ö, Saygılı N, Kısakesen H, Gazioğlu S, Gören AC, Eronat AP, Begüm Ceviz A, Öztürk T, et al. 2019. Different propolis samples, phenolic content, and breast cancer cell lines: variable cytotoxicity ranging from ineffective to potent. IUBMB Life. 71(5):619-631. doi:10.1002/iub.1996.
- Sharma R, Sharma R, Khaket TP, Dutta C, Chakraborty B, Mukherjee TK. 2017. Breast cancer metastasis: putative therapeutic role of vascular cell adhesion molecule-1. Cell Oncol. 40(3):199-208. doi:10.1007/s13402-017-0324-x.
- Smith YE, Wang G, Flynn CL, Madden SF, MacEneaney O, Cruz RGB, Richards CE, Jahns H, Brennan M, Cremona M, et al. 2022. Functional Antagonism of Junctional Adhesion Molecule-A (JAM-A), overexpressed in Breast Ductal Carcinoma In Situ (DCIS), reduces HER2-positive tumor progression. Cancers. 14(5):1303. doi:10.3390/cancers14051303.
- Soto MS, O'Brien ER, Andreou K, Scrace SF, Zakaria R, Jenkinson MD, O'Neill E, Sibson NR. 2016. Disruption of tumour-host communication by downregulation of LFA-1 reduces COX-2 and e-NOS expression and inhibits brain metastasis growth. Oncotarget. 7(32):52375-52391. doi:10.18632/oncotarget.10737.
- Sökeland G, Schumacher U. 2019. The functional role of integrins during intra- and extravasation within the metastatic cascade. Mol Cancer. 18(1):12. doi:10.1186/s12943-018-0937-3.
- Strell C, Entschladen F. 2008. Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal. 6(1):10. doi:10.1186/1478-811X-6-10.
- Sudhakaran M, Navarrete TG, Mejía-Guerra K, Mukundi E, Eubank TD, Grotewold E, Arango D, Doseff Al. 2023. Transcriptome reprogramming through alternative splicing triggered by apigenin drives cell death in triple-negative breast cancer. Cell Death Dis. 14(12):824. doi:10.1038/s41419-023-06342-6.

- Vahdanikia V, Maleki M, Asl Irani Fam R, Abdi A. 2022. Assessment the effect of human umbilical Cord Wharton's jelly stem cells on the expression of homing genes; CXCR4 and VLA-4 in cell line of breast cancer. Int J Hematol Oncol Stem Cell Res. 16(2):110-116. doi:10.18502/ ijhoscr.v16i2.9204.
- Vasse M, Thibout D, Paysant J, Legrand E, Soria C, Crépin M. 2001. Decrease of breast cancer cell invasiveness by sodium phenylacetate (NaPa) is associated with an increased expression of adhesive molecules. Br J Cancer. 84(6):802-807. doi:10.1054/bjoc.2000.1648.
- Vazquez Rodriguez G. Abrahamsson A. Jensen LD. Dabrosin C. 2017. Estradiol promotes breast cancer cell migration via recruitment and activation of neutrophils. Cancer Immunol Res. 5(3):234-247. doi:10.1158/2326-6066.Cir-16-0150.
- Vellanki SH, Cruz RGB, Jahns H, Hudson L, Sette G, Eramo A, Hopkins AM. 2019. Natural compound Tetrocarcin-A downregulates Junctional Adhesion Molecule-A in conjunction with HER2 and inhibitor of apoptosis proteins and inhibits tumor cell growth. Cancer Lett. 440-441:23-34. doi:10.1016/j.canlet.2018.09.032.
- Vellanki SH, Cruz RGB, Richards CE, Smith YE, Hudson L, Jahns H, Hopkins AM. 2019. Antibiotic Tetrocarcin-A down-regulates JAM-A, IAPs and induces apoptosis in triple-negative breast cancer models. Anticancer Res. 39(3):1197-1204. doi:10.21873/anticanres.13230.
- Vences-Catalán F, Rajapaksa R, Kuo CC, Miller CL, Lee A, Ramani VC, Jeffrey SS, Levy R, Levy S. 2021. Targeting the tetraspanin CD81 reduces cancer invasion and metastasis. Proc Natl Acad Sci USA. 118(24):1-8. doi:10.1073/pnas.2018961118.
- Walker E, Turaga SM, Wang X, Gopalakrishnan R, Shukla S, Basilion JP, Lathia JD. 2021. Development of near-infrared imaging agents for detection of junction adhesion molecule-A protein. Transl Oncol. 14(3):101007. doi:10.1016/j.tranon.2020.101007.
- Wang HS, Hung Y, Su CH, Peng ST, Guo YJ, Lai MC, Liu CY, Hsu JW. 2005. CD44 cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (alpha L beta2) and VLA-4 (alpha4beta1). Exp Cell Res. 304(1):116-126. doi:10.1016/j.yexcr.2004.10.015.
- Wang Y, Lui WY. 2012. Transforming growth factor-\$1 attenuates junctional adhesion molecule-A and contributes to breast cancer cell invasion. Eur J Cancer. 48(18):3475-3487. doi:10.1016/j. ejca.2012.04.016.
- Wei J, Huang XJ, Huang Y, Xiong MY, Yao XY, Huang ZN, Li SN, Zhou WJ, Fang DL, Deng DH, et al. 2021. Key immune-related gene ITGB2 as a prognostic signature for acute myeloid leukemia. Ann Transl Med. 9(17):1386-1386. doi:10.21037/atm-21-3641.
- Willingham MC. 1999. Cytochemical methods for the detection of apoptosis. J Histochem Cytochem. 47(9):1101–1110. doi:10.1177/002215549904700901.
- Wu HT, Lin J, Liu YE, Chen HF, Hsu KW, Lin SH, Peng KY, Lin KJ, Hsieh CC, Chen DR. 2021. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. Phytomedicine. 81:153437. doi:10.1016/j.phymed.2020.153437.
- Wu J, Luo D, Xu J. 2023. Transcriptome profiling analysis of breast cancer cell MCF-7 treated by sesamol. Breast Cancer. 15:391-401. doi:10.2147/bctt.S392480.
- Wu Q, Kroon PA, Shao H, Needs PW, Yang X. 2018. Differential effects of quercetin and two of its derivatives, isorhamnetin and isorhamnetin-3-glucuronide, in inhibiting the proliferation of human breast-cancer MCF-7 cells. J Agric Food Chem. 66(27):7181-7189. doi:10.1021/acs. jafc.8b02420.
- Yamashita K, Taniguchi T, Niizeki N, Nagao Y, Suzuki A, Toguchi A, Takebayashi S, Ishikawa J, Nagura O, Furuhashi K, et al. 2023. Cycle threshold (Ct) values of SARS-CoV-2 detected with the GeneXpert(®) system and a mutation associated with different target gene failure. Curr Issues Mol Biol. 45(5):4124-4134. doi:10.3390/cimb45050262.
- Yang B, Huang J, Xiang T, Yin X, Luo X, Huang J, Luo F, Li H, Li H, Ren G. 2014. Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J Appl Toxicol. 34(1):105–112. doi:10.1002/jat.2941.

- Yu HJ, Shin JA, Cho SD. 2023. Inhibition of focal adhesion kinase/paxillin axis by caffeic acid phenethyl ester restrains aggressive behaviors of head and neck squamous cell carcinoma in vitro. Arch Oral Biol. 146:105611. doi:10.1016/j.archoralbio.2022.105611.
- Zhang B, Li X, Tang K, Xin Y, Hu G, Zheng Y, Li K, Zhang C, Tan Y. 2023. Adhesion to the brain endothelium selects breast cancer cells with brain metastasis potential. Int J Mol Sci. 24(8):7087-7103. doi:10.3390/ijms24087087.
- Zhang X, Dong Y, Zhao M, Ding L, Yang X, Jing Y, Song Y, Chen S, Hu Q, Ni Y. 2020. ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics. 10(26):12044-12059. doi:10.7150/thno.47901.
- Zhao C, Lu F, Chen H, Zhao X, Sun J, Chen H. 2014. Dysregulation of JAM-A plays an important role in human tumor progression. Int J Clin Exp Pathol. 7(10):7242-7248.